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mp 102-104 °C); TH-NMR (CCly) 5 2.92-3.35 (complex m, 6 H), 2.70
(broads, 2 H), 1.43 (t,4 H, J = 1.3 Hz).
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For several years we have been studying the reaction of
propargyl alcohols with phosphorus trihalides under condi-
tions which incorporate phosphorus in the products.!-8 Of
particular interest has been the reaction sequence shown in
Scheme I, which leads to allenic phosphonic acids (1) and
thence to 1,2-oxaphosphol-3-enes (2). Thus, a variety of allenic
phosphonyl compounds have been prepared,!:24 as well as
oxaphospholenes with E = H,1.24 Br,> HgX,5 and OH (— 4-
keto-1,2-oxaphospholenes).? Moreover, the methyl esters of
1 and 2 are readily prepared from the free acid with diazo-
methane.”

The proton!:2458 and phosphorus-2* NMR spectra of these
compounds have proven quite interesting, especially with
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respect to long-range heteronuclear coupling. Typical values*
are shown with the structures in Chart 1.92» Chloromercuri
derivative 3 was especially noteworthy because it showed
long-range 1%9Hg couplings to protons five bonds away and an
apparent effect on the rotation of the underlined tert-butyl
group.® As a complement to these earlier studies, we now re-
port the 13C spectral data for some of these unique com-
pounds. These results provide useful model data for chemical
shifts and 13C-3!P coupling constants in a wide variety of or-
ganophosphorus compounds.

Results

The 13C chemical shifts and 13C-P coupling constants for
six allenic phosphonyl compounds are listed in Table I, and
data for six oxaphospholene derivatives are given in Table II.
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Figure 1. Average chemical shifts (parts per million downfield from
Me4Si) and coupling constants (hertz) for allenic phosphoryl deriv-
atives and oxaphosphol-3-enes.
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Average chemical shift and coupling constant data for the
allenic phosphoryl derivatives and the oxaphospholenes are
summarized in Figure 1. Ranges are given as standard devia-

tion.

In most cases peak assignments were readily made by chemical
shift and coupling constant magnitudes, and these assign-
ments were consistent with relative peak intensities, consid-
ering nuclear Overhauser enhancements for those carbons

1scussion

D

Because of the novelty of oxaphosphol-3-enes and the

paucity of 13C data published for allenic phosphoryl com-

with hydrogens directly attached.l9 Some of the quaternary

carbon resonances were exceedingly weak, even with 10°
transients; these assignments () should be considered ten-

tative. Where only a single line was observed for a given car-

pounds, it is difficult to find exact analogies with which to
compare our results. Nonetheless, from more general 13C data

bon, the coupling constant is listed as 0, but lower limits to

detection of small coupling are estimated to be 2 Haz.
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on organophosphorus compounds,!! it is clear that the
chemical shifts and coupling constants reported here occur
within the regions for comparably situated carbon nuclei.
Some typical data are given in Chart II.

Several trends in chemical shift and coupling constants
become apparent from further examination of the data in
Tables I and II. Alkyl substitution at C; or Cj of the allenic
compounds and C; of the oxaphospholenes causes an ca. 20
ppm downfield shift in their resonances, as noted in model
compounds.191! The chemical shift of C; in the allenes occurs
in its unique downfield position and is relatively insensitive
to substitution.!911h C, of the oxaphospholenes is not affected
by substitution of HgCl for H, but E = Br causes a 25 ppm
upfield shift. This might be ascribed to p—dr resonance not

(Br ot
£> f - N/
/o

present when E = H ¢r HgCl. Long-range effects of chirality
on equivalence are also seen in these data. That Ry and Rgin
the oxaphospholene esters are rendered diastereotopic by the

O\p /__><R2
/o
X R,

chirally substituted phosphorus can be readily seen from the
first and fifth entries in Table II. This effect, previously noted
by proton NMR spectroscopy,? is absent in the free acids and
their salts, Additionally, the chirality of the 1,3-di-tert-
butylallenyl system renders the two methoxy groups on
phosphorus nonequivalent.12

H,CO OCH,

Notes

With regard to coupling constants, the most unexpected
observation was the small value observed for 2J between P and
the central allenic carbon.!!f The coupling was in fact 0 except
when R; = tert-butyl, and then only 5 Hz. Clearly the positive
and negative components of the coupling constant essentially
cancel one another in this arrangement. 2Jp_c,) values in the
oxaphospholes averaged about 17 Hz, except when E = Br (J
= 51 Hz). This may be further evidence for the resonance ef-
fect described above. J values for the allenes were somewhat
larger than model compounds would have suggested (vide
supra), but the values decreased by ca. 30 Hz to more “normal”
values in the oxaphospholenes. These effects may be ration-
alized by changes in the s character of the C;-P bond as R;
substituents change and as the ring closes. A comparison of
%Jp.c, (allene 7 Hz, oxaphospholene 12 Hz) and 4Jp_c, (allene
6 Hz, oxaphospholene 1 Hz) with comparable P-H coupling
constants (2Jp_y: allene 8 Hz, oxaphospholene 33 Hz; 4Jp_ g
allene 13 Hz, oxaphospholene 5 Hz)!:24 shows that the former
values are generally somewhat greater than predicted from
differences in magnetogyric ratio alone:!3 Jpc/dpy =~ yisc/y1y
= (0.251. Finally, it is interesting to note that 3J (P-Cj;) in the
oxaphospholenes averages 10 Hz while the oxaphospholane
(sixth entry of Table II) shows 0 coupling, even though the
P-0-C (2J) contribution is still possible. This suggests that
more spin information is transmitted via the PC=CC linkage
than by the P-O-C linkage.

Experimental Section

The compounds examined in this study were prepared as previously
described.1-8 13C spectra were obtained on a Varian CFT-20 spec-
trometer in the Fourier mode with total proton decoupling. Typical
spectral parameters are the following: sweep width, 5000 Hz; tran-
sients, 8 X 10% pulse width, 8 us; acquisition time, 0.4 s.
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